Search results for "Electrochemical deposition"

showing 10 items of 12 documents

Electrochemistry of TiO2–iron hexacyanocobaltate composite electrodes

2014

Abstract In this paper we investigate the electrochemical behavior of iron hexacyanocobaltate (FeHCC) in comparison to the cobalt hexacyanoferrate (CoHCF). The best results were achieved on electrochemical synthesized film of FeHCC on the TiO2 modified electrodes. The chemical and physical characterizations confirm the formation of the FeHCC with the classical cubic crystal structure of the Prussian blue analogs, with cell parameter a very close to 10 A, as well as the formation of micro aggregates of TiO2 covered by FeHCC. The synthesis was performed on various substrates such as glassy carbon (GC), graphite foil (GF) and indium tin oxide (ITO) in order to develop new technological applica…

Composite materialPrussian blueMaterials scienceInorganic chemistryGeneral ChemistryElectrochemical depositionGlassy carbonCubic crystal systemCondensed Matter PhysicsElectrochemistryIndium tin oxideModified electrodeschemistry.chemical_compoundchemistryElectrodeGeneral Materials ScienceGraphiteIron hexacyanocobaltateFOIL methodSettore CHIM/02 - Chimica Fisica
researchProduct

SPEEDAM 2010 Poster REC0616: An electrochemical route towards the fabrication of nanostructured semiconductor solar cells

2010

Electrochemical DepositionCIGSNanostructured SemiconductorSolar Cells
researchProduct

Sintesi per via elettrochimica di nanowires di leghe Co-Sn

2008

Electrochemical deposition Anodic alumina membranes Nanowires Lithium batterry SnCo alloy
researchProduct

Ion-Track Template Synthesis and Characterization of ZnSeO3 Nanocrystals

2022

A.I.P. thanks the Institute of Solid-State Physics, University of Latvia. ISSP UL as the Center of Excellence is supported through the Framework Program for European universities. The work was carried out within the framework of the grant AP05134367 of the Ministry Funding: The work was carried out within the framework of the grant AP05134367 of the Ministry of education and Science Science of of the Republic Republic of Kazakhstan.

Inorganic ChemistrySiO<sub>2</sub>/Si track template; chemical and electrochemical deposition; ZnSeO<sub>3</sub> nanocrystals; XRD study; quantum chemical calculationchemical and electrochemical depositionGeneral Chemical Engineering:NATURAL SCIENCES::Physics [Research Subject Categories]General Materials ScienceSiO2/Si track templateZnSeO3 nanocrystalsCondensed Matter Physicsquantum chemical calculationXRD studyCrystals
researchProduct

Fabrication and Characterisation of Perovskite Thin Films for Photovoltaic Application

2018

This paper presents an alternative way to obtain perovskite thin films for photovoltaic application. This technique results more competitive, scalable, low-cost, reproducible and is different from other most common methods of fabrication.

Materials scienceFabricationthin filmRenewable Energy Sustainability and the EnvironmentPhotovoltaic systemPerovskite solar cellEnergy Engineering and Power TechnologyNanotechnologyComputer Science Applications1707 Computer Vision and Pattern RecognitionPerovskite solar cellIndustrial and Manufacturing EngineeringComputer Networks and CommunicationSettore ING-IND/23 - Chimica Fisica ApplicataArtificial Intelligenceperovskite thin films electrodeposition lead oxide solar cellThin filmInstrumentationPerovskite (structure)electrochemical deposition
researchProduct

Growth and Characterization of Ordered PbO[sub 2] Nanowire Arrays

2008

Large arrays of PbO 2 nanowires having high aspect ratios (length-to-width ratio) were grown by potentiostatic electrodeposition into anodic alumina templates under anodic polarization. Different electrolytic solutions were used in order to obtain nanowires of pure α-PbO 2 , pure β-PbO 2 , and a a + β mixture, We have found that, in a lead nitrate bath, a crystallographic structure of nanowires depends on pH; this latter was varied adding diluted nitric acid to the electrolyte. Nanowires of pure β-PbO 2 were obtained at pH 0.6, while mixed α-PbO 2 + β-PbΟ 2 nanowires were grown at pH 2. Pure α-phase was obtained in a bath containing lead acetate at pH 6.6. In all deposition conditions, nano…

Materials scienceRenewable Energy Sustainability and the EnvironmentNanowireAnalytical chemistryLead dioxideNanotechnologyCrystal structureElectrolyteCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAnodeElectrochemical deposition Anodic alumina membranes Lead dioxide Nanowireschemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicatachemistryNitric acidMaterials ChemistryElectrochemistryVapor–liquid–solid methodPolarization (electrochemistry)Journal of The Electrochemical Society
researchProduct

An electrochemical route towards the fabrication of nanostructured semiconductor solar cells

2010

This work presents our preliminary results regarding an electrochemical process which allows the growth of nanostructured materials by means of nanopore templates. Also we analyze possible applications of this process to fabricate nanostructured semiconductors, such as CIGS, suitable for photovoltaic devices, and we consider the implications from the perspective of characterization techniques and device modelling when using such a technology.

NanoporeSemiconductorNanolithographyFabricationMaterials sciencebusiness.industryPhotovoltaic systemNanowireCIGS Electrochemical Deposition Nanostructured Semiconductors Solar CellsNanotechnologybusinessCopper indium gallium selenide solar cellsCharacterization (materials science)
researchProduct

Electrochemical Fabrication of Sn-Co Nanowires in Anodic Alumina Templates

2008

Settore ING-IND/23 - Chimica Fisica ApplicataElectrochemical Deposition Anodic Alumina Membranes SnCo alloys Nanowires Lithium Batteries
researchProduct

Processo di produzione di filamenti nanometrici in lega amorfa Sn-Co

2008

Settore ING-IND/23 - Chimica Fisica ApplicataElectrochemical deposition Lithium Battery Anodic alumina membranes Nanowires SnCo alloy
researchProduct

Photo-Electrochemical deposition of Poly-3,4 Ethylenedioxythiophene on Anodic Films on Ti-Si Alloys.

2013

Settore ING-IND/23 - Chimica Fisica ApplicataPhoto-Electrochemical deposition Poly-34 Ethylenedioxythiophene Anodic Films Ti-Si Alloys.
researchProduct